Spectrum and Essential Spectrum of Toeplitz Operators

Dechao Zheng

Chongqing University

Spectrum and Essential Spectrum of Toeplitz Operators

Dechao Zheng

Chongqing University and Vanderbilt University

Spectrum and Essential Spectrum of Toeplitz Operators

Dechao Zheng

Chongqing University and Vanderbilt University

This is a joint work with Carl Sundberg.

Spectrum and Essential Spectrum of Toeplitz Operators

Dechao Zheng

Chongqing University and Vanderbilt University

This is a joint work with Carl Sundberg.

Spectrum

The spectrum $\sigma(T)$ of a bounded linear operator T acting on a Hilbert space H is the set of complex numbers λ such that $\lambda I-T$ does not have an inverse that is a bounded linear operator.

If $H=C^{n}, T$ can be viewed as a matrix

$$
\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \cdots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right]
$$

and so its spectrum consists of eigenvalues of the matrix. But if H is an infinite dimensional Hilbert space, the spectrum of its bounded operator T may have more numbers than its eigenvalues $\sigma_{p}(T)$.

Essential Spectrum

The essential spectrum of T, usually denoted $\sigma_{e}(T)$, is the set of all complex numbers λ such that $\lambda I-T$ is not a Fredholm operator.

Essential Spectrum

The essential spectrum of T, usually denoted $\sigma_{e}(T)$, is the set of all complex numbers λ such that $\lambda I-T$ is not a Fredholm operator.

Here, an operator is Fredholm if its range is closed and its kernel and cokernel are finite-dimensional.

Essential Spectrum

The essential spectrum of T, usually denoted $\sigma_{e}(T)$, is the set of all complex numbers λ such that $\lambda I-T$ is not a Fredholm operator.

Here, an operator is Fredholm if its range is closed and its kernel and cokernel are finite-dimensional.

$$
\sigma_{e}(T)=\{\lambda \in C:[\lambda I-T] \text { is not invertible in } \mathcal{C}(H) .\}
$$

Calkin algebra $\mathcal{C}(H)=B(H) / K(H)$
$B(H)$: the algebra of bounded linear operators on H.
$K(H)$: the ideal of compact operators on H.

Fredholm Index and Spectral Picture

If λ is not in $\sigma_{e}(T), T-\lambda I$ is Freholm. The Fredholm index is defined by

$$
\operatorname{ind}(T-\lambda I)=\operatorname{dim} \operatorname{Ker}(T-\lambda I)-\operatorname{dim} \operatorname{Ker}(T-\lambda I)^{*}
$$

Fredholm Index and Spectral Picture

If λ is not in $\sigma_{e}(T), T-\lambda /$ is Freholm. The Fredholm index is defined by

$$
\operatorname{ind}(T-\lambda I)=\operatorname{dim} \operatorname{Ker}(T-\lambda I)-\operatorname{dim} \operatorname{Ker}(T-\lambda I)^{*}
$$

Carl Pearcy, Some Recent developments in Operator theory, CBMS 36, 1975.

Theorem

Let Ω be a connected component of $C \backslash \sigma_{e}(T)$ such that ind $(T-\lambda I)=0$ for each $\lambda \in \Omega$. Then one of the following holds:
(a) $\Omega \cap \sigma(T)$ is empty.
(b) $\Omega \subset \sigma(T)$.
(c) $\Omega \cap \sigma(T)$ is a countable set of isolated eigenvalues of T, each having finite multiplicity.
Furthermore the intersection of $\sigma(T)$ with the unbounded component of $C \backslash \sigma_{e}(T)$ is a countable set of isolated eigenvalues of T, each of which has finite multiplicity.

Toeplitz Operators on the Hardy space

A Toeplitz operator on the Hardy space is the compression of a multiplication operator on the circle to the Hardy space

Toeplitz Operators on the Hardy space

A Toeplitz operator on the Hardy space is the compression of a multiplication operator on the circle to the Hardy space

Let ∂D be the circle, with the standard Lebesgue measure, and $L^{2}(\partial D)$ be the Hilbert space of square-integrable functions. A bounded measurable function ϕ on ∂D defines a multiplication operator M_{ϕ} on $L^{2}(\partial D)$. Let P be the projection from $L^{2}(\partial D)$ onto the Hardy space H^{2}. The Toeplitz operator with symbol ϕ is defined by

$$
T_{\phi}=\left.P M_{\phi}\right|_{H^{2}}
$$

Toeplitz Matrix

A bounded operator on H^{2} is Toeplitz if and only if its matrix representation, in the basis $\left\{z^{n}\right\}_{0}^{\infty}$, has constant diagonals:

$$
\left[\begin{array}{cccccc}
a_{0} & a_{-1} & a_{-2} & a_{-3} & \cdots & \cdots \\
a_{1} & a_{0} & a_{-1} & a_{-2} & \cdots & \cdots \\
a_{2} & a_{1} & a_{0} & a_{-1} & \cdots & \cdots \\
\vdots & \ddots & \ddots & \ddots & \ddots & \vdots
\end{array}\right]
$$

Ronald G. Douglas

Banach Algebra

 Techniques in Operator TheorySecond Edition

Springer

N.K. Nilothatie

Treative on the silift Operation

GraduateTexts in Mathematics

Ronald G. Douglas
Banach Algebra Techniques in Operator Theory

Second Edition

N.K. Nilothatie

Treatier on the silith Operator

Click to LOOK INSIDE!

A. BOTICRER

8, 811.8F月MANN
Analysis
of Toeplitz
Operators

hographs in Mathematics

Bergman space

Let $d A$ denote Lebesgue area measure on the unit disk \mathbb{D}, normalized so that the measure of \mathbb{D} equals 1 . The Bergman space L_{a}^{2} is the Hilbert space consisting of the analytic functions on \mathbb{D} that are also in $L^{2}(\mathbb{D}, d A)$:

Bergman space

Let $d A$ denote Lebesgue area measure on the unit disk \mathbb{D}, normalized so that the measure of \mathbb{D} equals 1 . The Bergman space L_{a}^{2} is the Hilbert space consisting of the analytic functions on \mathbb{D} that are also in $L^{2}(\mathbb{D}, d A)$:

$$
f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}
$$

and

$$
\sum_{n=0}^{\infty} \frac{\left|a_{n}\right|^{2}}{n+1}<\infty
$$

Bergman space

Let $d A$ denote Lebesgue area measure on the unit disk \mathbb{D}, normalized so that the measure of \mathbb{D} equals 1 . The Bergman space L_{a}^{2} is the Hilbert space consisting of the analytic functions on \mathbb{D} that are also in $L^{2}(\mathbb{D}, d A)$:

$$
f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}
$$

and

$$
\sum_{n=0}^{\infty} \frac{\left|a_{n}\right|^{2}}{n+1}<\infty
$$

Let $e_{n}=\sqrt{n+1} z^{n}$. Then $\left\{e_{n}\right\}_{0}^{\infty}$ form an orthonormal basis of the Bergman space L_{a}^{2}.

Toeplitz Operators

For $\phi \in L^{\infty}(\mathbb{D}, d A)$ where $d A$ is normalized area measure on \mathbb{D}, the Toeplitz operator T_{ϕ} with symbol ϕ is the operator on L_{a}^{2} defined by

$$
T_{\phi} f=P(\phi f)
$$

here P is the orthogonal projection from $L^{2}(\mathbb{D}, d A)$ onto L_{a}^{2}. Note that if $\phi \in H^{\infty}$ (the set of bounded analytic functions on $\partial \mathbb{D}$), then T_{ϕ} is just the operator of multiplication by ϕ on L_{a}^{2}.

Operator Theory in Function Spaces

Kehe Zhu

MATRIX REPRESENTATION

Let $e_{n}=\sqrt{n+1} z^{n}$ and $\phi(z)=\sum_{j=-\infty}^{-1} a_{j} \bar{z}^{|j|}+\sum_{j=0}^{\infty} a_{j} z^{j}$.

$$
\left\langle T_{\phi} e_{i}, e_{j}\right\rangle=\sqrt{i+1} \sqrt{j+1} a_{j-i}\left\langle z^{j}, z^{j}\right\rangle=a_{j-i} \sqrt{\frac{i+1}{j+1}}
$$

On the basis $\left\{e_{n}\right\}$, the matrix representation of the Toeplitz operator T_{ϕ} on the Bergman space is given by

$$
\left[\begin{array}{cccccc}
a_{0} & \sqrt{\frac{2}{1}} a_{-1} & \sqrt{\frac{3}{1}} a_{-2} & \sqrt{\frac{4}{1}} a_{-3} & \cdots & \cdots \\
\sqrt{\frac{1}{2}} a_{1} & a_{0} & \sqrt{\frac{3}{2}} a_{-1} & \sqrt{\frac{4}{2}} a_{-2} & \cdots & \cdots \\
\sqrt{\frac{1}{3}} a_{2} & \sqrt{\frac{2}{3}} a_{1} & a_{0} & \sqrt{\frac{4}{3}} a_{-1} & \cdots & \cdots \\
\vdots & \ddots & \ddots & \ddots & \ddots & \vdots
\end{array}\right] .
$$

Some algebraic properties

(a) $T_{\alpha \phi+\beta \psi}=\alpha T_{\phi}+\beta T_{\psi}$.
(b) If ϕ is in H^{∞}, then

$$
T_{\psi} T_{\phi}=T_{\psi \phi} .
$$

(c) If $\bar{\psi}$ is in H^{∞}, then

$$
T_{\psi} T_{\phi}=T_{\psi \phi} .
$$

(d) $T_{\phi}^{*}=T_{\bar{\phi}}$.
(e) If $\phi \geq 0$, then $T_{\phi} \geq 0$.

Fredholm index for Toeplitz operator

If ϕ is continuous on the unit circle ∂D and does not vanish on ∂D, then T_{ϕ} is Fredholm and

$$
i n d\left(T_{\phi}\right)=n(\phi(\partial \mathbb{D}), 0)
$$

Fredholm index for Toeplitz operator

If ϕ is continuous on the unit circle ∂D and does not vanish on ∂D, then T_{ϕ} is Fredholm and

$$
\operatorname{ind}\left(T_{\phi}\right)=n(\phi(\partial \mathbb{D}), 0)
$$

For a closed curve γ in the complex plane \mathbb{C} and $a \in \mathbb{C} \backslash \gamma$, define the winding number of the curve γ with respect to a to be

$$
n(\gamma, a)=\frac{1}{2 \pi i} \int_{\gamma} \frac{d z}{z-a}
$$

BERGMAN SHIFT

On the basis $\left\{e_{n}=\sqrt{n+1} z^{n}\right\}$, the Toeplitz operator T_{z} with symbol z is a weighted shift operator, called the Bergman shift:

$$
T_{z} e_{n}=\sqrt{\frac{n+1}{n+2}} e_{n+1}
$$

and hence $T_{\bar{z}}$ is a backward weighted shift:

$$
T_{\bar{z}} e_{n}= \begin{cases}0 & n=0 \tag{1}\\ \sqrt{\frac{n}{n+1}} e_{n-1} . & n>0\end{cases}
$$

The matrix representation of the Toeplitz operators $T_{1-|z|^{2}}=I-T_{z}^{*} T_{z}$ is given by

$$
\left[\begin{array}{cccccc}
\frac{1}{2} & 0 & 0 & 0 & \cdots & \cdots \\
0 & \frac{1}{3} & 0 & 0 & \cdots & \cdots \\
0 & 0 & \frac{1}{4} & 0 & \cdots & \cdots \\
\vdots & \ddots & \ddots & \ddots & \ddots & \vdots
\end{array}\right]
$$

Differences Between H^{2} and L_{a}^{2}

Theorem (Coburn Theorem)

If $T_{\phi} \neq 0$ on the Hardy space, either $\operatorname{ker} T_{\phi}=\{0\}$ or $\operatorname{ker} T_{\phi}^{*}=\{0\}$.

Differences between H^{2} and L_{a}^{2}

Theorem (Coburn Theorem)

If $T_{\phi} \neq 0$ on the Hardy space, either $\operatorname{ker} T_{\phi}=\{0\}$ or $\operatorname{ker} T_{\phi}^{*}=\{0\}$.

Question

Does Coburn theorem hold on the Bergman space?

Differences between H^{2} and L_{a}^{2}

Theorem (Coburn Theorem)

If $T_{\phi} \neq 0$ on the Hardy space, either $\operatorname{ker} T_{\phi}=\{0\}$ or $\operatorname{ker} T_{\phi}^{*}=\{0\}$.

Question

Does Coburn theorem hold on the Bergman space?
No! On the Bergman space, both $\operatorname{ker} T_{1-|z|^{2}-\frac{1}{2}}$ and $\operatorname{ker} T_{1-|z|^{2}-\frac{1}{2}}^{*}$ contain the function 1.
But $1-|z|^{2}-\frac{1}{2}$ is not harmonic in the unit disk and $T_{1-|z|^{2}}$ is compact!

Differences between H^{2} and L_{a}^{2}

Theorem (Coburn Theorem)

If $T_{\phi} \neq 0$ on the Hardy space, either $\operatorname{ker} T_{\phi}=\{0\}$ or $\operatorname{ker} T_{\phi}^{*}=\{0\}$.

Question

Does Coburn theorem hold on the Bergman space?
No! On the Bergman space, both $\operatorname{ker} T_{1-|z|^{2}-\frac{1}{2}}$ and $\operatorname{ker} T_{1-|z|^{2}-\frac{1}{2}}^{*}$ contain the function 1.

But $1-|z|^{2}-\frac{1}{2}$ is not harmonic in the unit disk and $T_{1-|z|^{2}}$ is compact!

Question

Does Coburn theorem hold on the Bergman space for T_{ϕ} even if ϕ is harmonic on the unit disk?

Differences between H^{2} and L_{a}^{2}

Theorem (Coburn Theorem)

If $T_{\phi} \neq 0$ on the Hardy space, either $\operatorname{ker} T_{\phi}=\{0\}$ or $\operatorname{ker} T_{\phi}^{*}=\{0\}$.

Question

Does Coburn theorem hold on the Bergman space?
No! On the Bergman space, both $\operatorname{ker} T_{1-|z|^{2}-\frac{1}{2}}$ and $\operatorname{ker} T_{1-|z|^{2}-\frac{1}{2}}^{*}$ contain the function 1.

But $1-|z|^{2}-\frac{1}{2}$ is not harmonic in the unit disk and $T_{1-|z|^{2}}$ is compact!

Question

Does Coburn theorem hold on the Bergman space for T_{ϕ} even if ϕ is harmonic on the unit disk?

No!

Widom Theorem and Douglas Theorem

Theorem (Widom Theorem)

The spectrum $\sigma\left(T_{\phi}\right)$ of a Toeplitz operator on the Hardy space is connected.

Widom Theorem and Douglas Theorem

Theorem (Widom Theorem)

The spectrum $\sigma\left(T_{\phi}\right)$ of a Toeplitz operator on the Hardy space is connected.

This was conjectured by Halmos.

Widom Theorem and Douglas Theorem

Theorem (Widom Theorem)

The spectrum $\sigma\left(T_{\phi}\right)$ of a Toeplitz operator on the Hardy space is connected.

This was conjectured by Halmos.

Theorem (Douglas Theorem)

The essential spectrum $\sigma_{e}\left(T_{\phi}\right)$ of a Toeplitz operator on the Hardy space is also connected.

GraduateTents
 in mathematics

Ronald G. Douglas
Banach Algebra Techniques in Operator Theory Second Edition

Questions

Question

Is the spectrum $\sigma\left(T_{\phi}\right)$ of a Toeplitz operator on the Bergman space connected?

Questions

Question

Is the spectrum $\sigma\left(T_{\phi}\right)$ of a Toeplitz operator on the Bergman space connected?

Question

Is the essential spectrum $\sigma_{e}\left(T_{\phi}\right)$ of a Toeplitz operator on the Bergman space connected?

Compact Toeplitz Operators

The matrix representation of the Toeplitz operators
$T_{1-|z|^{2}}=I-T_{z}^{*} T_{z}$ is given by

$$
\left[\begin{array}{cccccc}
\frac{1}{2} & 0 & 0 & 0 & \cdots & \cdots \\
0 & \frac{1}{3} & 0 & 0 & \cdots & \cdots \\
0 & 0 & \frac{1}{4} & 0 & \cdots & \cdots \\
\vdots & \ddots & \ddots & \ddots & \ddots & \vdots
\end{array}\right]
$$

$T_{1-|z|^{2}}$ is compact with the spectrum $\left\{\frac{1}{2}, \frac{1}{3}, \cdots\right\} \cup\{0\}$. Hence $\sigma\left(T_{1-|z|^{2}}\right)$ is disconnected.

Compact Toeplitz Operators

The matrix representation of the Toeplitz operators $T_{1-|z|^{2}}=I-T_{z}^{*} T_{z}$ is given by

$$
\left[\begin{array}{cccccc}
\frac{1}{2} & 0 & 0 & 0 & \cdots & \cdots \\
0 & \frac{1}{3} & 0 & 0 & \cdots & \cdots \\
0 & 0 & \frac{1}{4} & 0 & \cdots & \cdots \\
\vdots & \ddots & \ddots & \ddots & \ddots & \vdots
\end{array}\right]
$$

$T_{1-|z|^{2}}$ is compact with the spectrum $\left\{\frac{1}{2}, \frac{1}{3}, \cdots\right\} \cup\{0\}$. Hence $\sigma\left(T_{1-|z|^{2}}\right)$ is disconnected. But $1-|z|^{2}$ is not harmonic on the unit disk.

Compact Toeplitz operators on the Hardy SPACE AND THE BERGMAN SPACE

Theorem

On the Hardy space, T_{ϕ} is compact if and only if $\phi=0$.

Theorem (Axler-Zheng)

For $\phi \in L^{\infty}(D), T_{\phi}$ is compact on the Hardy space if and only if

$$
\lim _{|z| \rightarrow 1} \int_{D} \phi(w) \frac{\left(1-|z|^{2}\right)^{2}}{|1-\bar{z} w|^{4}} d A(w)=0 .
$$

Compact Toeplitz operators on the Hardy space and the Bergman space

Theorem

On the Hardy space, T_{ϕ} is compact if and only if $\phi=0$.

Theorem (Axler-Zheng)

For $\phi \in L^{\infty}(D), T_{\phi}$ is compact on the Hardy space if and only if

$$
\lim _{|z| \rightarrow 1} \int_{D} \phi(w) \frac{\left(1-|z|^{2}\right)^{2}}{|1-\bar{z} w|^{4}} d A(w)=0 .
$$

If ϕ is harmonic on the unit disk, then

$$
\lim _{|z| \rightarrow 1} \int_{D} \phi(w) \frac{\left(1-|z|^{2}\right)^{2}}{|1-\bar{z} w|^{4}} d A(w)=0
$$

implies that $\phi=0$ on ∂D and hence $\phi=0$ on the unit disk.

Compact Toeplitz operators on the Hardy space and the Bergman space

Theorem

On the Hardy space, T_{ϕ} is compact if and only if $\phi=0$.

Theorem (Axler-Zheng)

For $\phi \in L^{\infty}(D), T_{\phi}$ is compact on the Hardy space if and only if

$$
\lim _{|z| \rightarrow 1} \int_{D} \phi(w) \frac{\left(1-|z|^{2}\right)^{2}}{|1-\bar{z} w|^{4}} d A(w)=0
$$

If ϕ is harmonic on the unit disk, then

$$
\lim _{|z| \rightarrow 1} \int_{D} \phi(w) \frac{\left(1-|z|^{2}\right)^{2}}{|1-\bar{z} w|^{4}} d A(w)=0
$$

implies that $\phi=0$ on ∂D and hence $\phi=0$ on the unit disk.
There is no nontrivial compact Toeplitz operator with bounded harmonic symbol on the Bergman space.

Revised Questions

Question

Is the spectrum $\sigma\left(T_{\phi}\right)$ of a Toeplitz operator on the Bergman space connected if ϕ is bounded and harmonic on the unit disk?

Revised Questions

Question

Is the spectrum $\sigma\left(T_{\phi}\right)$ of a Toeplitz operator on the Bergman space connected if ϕ is bounded and harmonic on the unit disk?

Sundberg's conjecture: Yes! (Problem 7.10 in V.P. Havin and N.K. Nikolski (Eds), Linear and Complex Analysis Problem Book 3, Lecture notes in Mathematics 1573, 1994).
7.10
old

Revised Questions

Question

Is the essential spectrum $\sigma_{e}\left(T_{\phi}\right)$ of a Toeplitz operator on the Bergman space connected if ϕ is bounded and harmonic on the unit disk?

Revised Questions

Question

Is the essential spectrum $\sigma_{e}\left(T_{\phi}\right)$ of a Toeplitz operator on the Bergman space connected if ϕ is bounded and harmonic on the unit disk?

This was an open question in (G. McDonald and C. Sundberg, Indiana Univ. Math. J. 28 (1979)).

Supports for Sundberg's conjecture

Let ϕ be in $H^{\infty}(D)$.

Supports for Sundberg's conjecture

Let ϕ be in $H^{\infty}(D)$.
If λ is not in the closure of $\phi(D)$, then $\frac{1}{\phi-\lambda}$ is in $H^{\infty}(D)$ and

$$
T_{\phi-\lambda} T_{(\phi-\lambda)^{-1}}=T_{(\phi-\lambda)^{-1}} T_{\phi-\lambda}=I
$$

Supports for Sundberg's conjecture

Let ϕ be in $H^{\infty}(D)$.
If λ is not in the closure of $\phi(D)$, then $\frac{1}{\phi-\lambda}$ is in $H^{\infty}(D)$ and

$$
T_{\phi-\lambda} T_{(\phi-\lambda)^{-1}}=T_{(\phi-\lambda)^{-1}} T_{\phi-\lambda}=I
$$

If $\lambda=\phi(a)$ for some $a \in D$, then

$$
T_{\phi-\lambda}^{*} k_{a}=0
$$

Supports for Sundberg's conjecture

Let ϕ be in $H^{\infty}(D)$.
If λ is not in the closure of $\phi(D)$, then $\frac{1}{\phi-\lambda}$ is in $H^{\infty}(D)$ and

$$
T_{\phi-\lambda} T_{(\phi-\lambda)^{-1}}=T_{(\phi-\lambda)^{-1}} T_{\phi-\lambda}=I
$$

If $\lambda=\phi(a)$ for some $a \in D$, then

$$
T_{\phi-\lambda}^{*} k_{a}=0
$$

Hence
(a) If ϕ is analytic on the unit disk, then

$$
\sigma\left(T_{\phi}\right)=\operatorname{clos} \phi(D)
$$

Supports for Sundberg's conjecture

(b) If ϕ is real and harmonic on the unit disk, then

$$
\sigma\left(T_{\phi}\right)=[\inf \phi, \sup \phi] .
$$

Supports for Sundberg's conjecture

(b) If ϕ is real and harmonic on the unit disk, then

$$
\sigma\left(T_{\phi}\right)=[\inf \phi, \sup \phi] .
$$

(c) If ϕ is harmonic and has piecewise continuous boundary values, then $\sigma_{e}\left(T_{\phi}\right)$ consists of the path formed boundary values of ϕ by joining the one-sided limits at discontinuities by straight line segments and hence $\sigma_{e}\left(T_{\phi}\right)$ is connected.

Supports for Sundberg's conjecture

(b) If ϕ is real and harmonic on the unit disk, then

$$
\sigma\left(T_{\phi}\right)=[\inf \phi, \sup \phi] .
$$

(c) If ϕ is harmonic and has piecewise continuous boundary values, then $\sigma_{e}\left(T_{\phi}\right)$ consists of the path formed boundary values of ϕ by joining the one-sided limits at discontinuities by straight line segments and hence $\sigma_{e}\left(T_{\phi}\right)$ is connected.
(b) and (c) are contained in (G. McDonald and C. Sundberg, Indiana Univ. Math. J. 28 (1979)).

HARMONIC FUNCTION $h(z)=\bar{z}+\phi(z)$

We hope to construct ϕ having the following properties:
(a) $\phi(z)$ is a rational function with poles outside of the closure of the unit disk.

HARMONIC FUNCTION $h(z)=\bar{z}+\phi(z)$

We hope to construct ϕ having the following properties:
(a) $\phi(z)$ is a rational function with poles outside of the closure of the unit disk.
(b) $h(z)$ is continuous on the closure of the unit disk.

HARMONIC FUNCTION $h(z)=\bar{z}+\phi(z)$

We hope to construct ϕ having the following properties:
(a) $\phi(z)$ is a rational function with poles outside of the closure of the unit disk.
(b) $h(z)$ is continuous on the closure of the unit disk.
(c) $\sigma_{e}\left(T_{h}\right)=h(\partial D)$.

HARMONIC FUNCTION $h(z)=\bar{z}+\phi(z)$

We hope to construct ϕ having the following properties:
(a) $\phi(z)$ is a rational function with poles outside of the closure of the unit disk.
(b) $h(z)$ is continuous on the closure of the unit disk.
(c) $\sigma_{e}\left(T_{h}\right)=h(\partial D)$.
(d) 0 is an isolated eigenvalue of T_{h}.

EIgenvectors of T_{h} for THE EIGENVALUE 0

Let f be an eigenvector for T_{h} for the eigenvalue 0 . Then

$$
\begin{aligned}
0 & =T_{h} f(z) \\
& =T_{\bar{z}} f(z)+T_{\phi(z)} f(z) \\
& =\frac{1}{z^{2}} \int_{0}^{z} w f^{\prime}(w) d w+\phi(z) f(z)
\end{aligned}
$$

EIgenvectors of T_{h} FOR THE EIGENVALUE 0

Let f be an eigenvector for T_{h} for the eigenvalue 0 . Then

$$
\begin{aligned}
0 & =T_{h} f(z) \\
& =T_{\bar{z}} f(z)+T_{\phi(z)} f(z) \\
& =\frac{1}{z^{2}} \int_{0}^{z} w f^{\prime}(w) d w+\phi(z) f(z)
\end{aligned}
$$

LEMMA

For f in the Bergman space L_{a}^{2},

$$
\begin{equation*}
T_{\bar{z}} f(z)=\frac{1}{z^{2}} \int_{0}^{z} w f^{\prime}(w) d w . \tag{2}
\end{equation*}
$$

$\frac{1}{z^{2}} \int_{0}^{z} w f^{\prime}(w) d w+\phi(z) f(z)=0$

This is equivalent to the following first order differential equation

$$
\begin{equation*}
(1+z \phi(z)) f^{\prime}(z)=-\left(2 \phi(z)+z \phi^{\prime}(z)\right) f(z) . \tag{3}
\end{equation*}
$$

For a fixed $0<r<1$, we want
(a) a rational function $\eta(z)$ with poles outside the closure of the unit disk such that

$$
2 \phi(z)+z \phi^{\prime}(z)=(z-r) \eta(z)
$$

$\frac{1}{z^{2}} \int_{0}^{z} w f^{\prime}(w) d w+\phi(z) f(z)=0$

This is equivalent to the following first order differential equation

$$
\begin{equation*}
(1+z \phi(z)) f^{\prime}(z)=-\left(2 \phi(z)+z \phi^{\prime}(z)\right) f(z) \tag{3}
\end{equation*}
$$

For a fixed $0<r<1$, we want
(a) a rational function $\eta(z)$ with poles outside the closure of the unit disk such that

$$
2 \phi(z)+z \phi^{\prime}(z)=(z-r) \eta(z)
$$

(b) $1+z \phi(z)$ has a simple zero at $z=r$ and no other zeros in $\overline{\mathbb{D}}$. Write

$$
\psi(z)=\frac{1+z \phi(z)}{z-r}
$$

Then ψ is a rational function with poles outside of the closure of the unit disk.

$\frac{1}{z^{2}} \int_{0}^{z} w f^{\prime}(w) d w+\phi(z) f(z)=0$

This is equivalent to the following first order differential equation

$$
\begin{equation*}
(1+z \phi(z)) f^{\prime}(z)=-\left(2 \phi(z)+z \phi^{\prime}(z)\right) f(z) \tag{3}
\end{equation*}
$$

For a fixed $0<r<1$, we want
(a) a rational function $\eta(z)$ with poles outside the closure of the unit disk such that

$$
2 \phi(z)+z \phi^{\prime}(z)=(z-r) \eta(z)
$$

(b) $1+z \phi(z)$ has a simple zero at $z=r$ and no other zeros in $\overline{\mathbb{D}}$. Write

$$
\psi(z)=\frac{1+z \phi(z)}{z-r}
$$

Then ψ is a rational function with poles outside of the closure of the unit disk.
(3) becomes

$$
\frac{f^{\prime}(z)}{f(z)}=-\frac{\eta(z)}{\psi(z)}
$$

$(1+z \phi(z)) f^{\prime}(z)=-\left(2 \phi(z)+z \phi^{\prime}(z)\right) f(z)$

A solution of the above equation in the Bergman space L_{a}^{2} is given by

$$
f(z)=\exp \left[-\int_{0}^{z} \frac{\eta(w)}{\psi(w)} d w\right]
$$

Thus f is an eigenvector of T_{h} for the eigenvalue equal to 0 .

$(1+z \phi(z)) f^{\prime}(z)=-\left(2 \phi(z)+z \phi^{\prime}(z)\right) f(z)$

A solution of the above equation in the Bergman space L_{a}^{2} is given by

$$
f(z)=\exp \left[-\int_{0}^{z} \frac{\eta(w)}{\psi(w)} d w\right]
$$

Thus f is an eigenvector of T_{h} for the eigenvalue equal to 0 . Since $\sigma_{e}\left(T_{h}\right)=h(\partial D)$ and

$$
\operatorname{ind}\left(T_{h}\right)=n(h(\partial \mathbb{D}), 0)
$$

we want that 0 is an isolated eigenvalue of T_{h} to hope
(c) The winding number

$$
n(h(\partial \mathbb{D}), 0)=0
$$

$(1+z \phi(z)) f^{\prime}(z)=-\left(2 \phi(z)+z \phi^{\prime}(z)\right) f(z)$

A solution of the above equation in the Bergman space L_{a}^{2} is given by

$$
f(z)=\exp \left[-\int_{0}^{z} \frac{\eta(w)}{\psi(w)} d w\right]
$$

Thus f is an eigenvector of T_{h} for the eigenvalue equal to 0 .
Since $\sigma_{e}\left(T_{h}\right)=h(\partial D)$ and

$$
\operatorname{ind}\left(T_{h}\right)=n(h(\partial \mathbb{D}), 0)
$$

we want that 0 is an isolated eigenvalue of T_{h} to hope
(c) The winding number

$$
n(h(\partial \mathbb{D}), 0)=0
$$

$\operatorname{dim} \operatorname{ker} T_{h}=\operatorname{dim} \operatorname{ker} T_{h}^{*}$.

LEMMA

For each $0<r<1$, there exists a rational function $\phi(z)$ with poles outside $\overline{\mathbb{D}}$ such that
(a) $2 \phi(r)+r \phi^{\prime}(r)=0$.
(b) $1+z \phi(z)$ has a simple zero at $z=r$ and no other zeros in $\overline{\mathbb{D}}$.
(c) The winding number

$$
n(h(\partial \mathbb{D}), 0)=0
$$

where $h=\bar{z}+\phi(z)$.

Sketch of Proof

Disconnected Spectrum

Theorem

Let $h(z)=\bar{z}+\phi(z)$ Then 0 is an eigenvalue of T_{h} and is an isolated point of $\sigma\left(T_{h}\right)$. Hence $\sigma\left(T_{h}\right)$ is disconnected.
(1) Since h is continuous on the closure of the unit disk, then

$$
\sigma_{e}\left(T_{h}\right)=h(\partial \mathbb{D})
$$

Disconnected Spectrum

Theorem

Let $h(z)=\bar{z}+\phi(z)$ Then 0 is an eigenvalue of T_{h} and is an isolated point of $\sigma\left(T_{h}\right)$. Hence $\sigma\left(T_{h}\right)$ is disconnected.
(1) Since h is continuous on the closure of the unit disk, then

$$
\sigma_{e}\left(T_{h}\right)=h(\partial \mathbb{D})
$$

(2) $0 \in \sigma_{p}\left(T_{h}\right) \cap \Omega$ where

$$
\begin{aligned}
\Omega & =\left\{\lambda \notin \sigma_{e}\left(T_{h}\right): \operatorname{ind}\left(T_{h}-\lambda I\right)=0\right\} \\
& =\{\lambda \notin h(\partial \mathbb{D}): n(h(\partial \mathbb{D}), \lambda)=0\}
\end{aligned}
$$

Disconnected Spectrum

Theorem

Let $h(z)=\bar{z}+\phi(z)$ Then 0 is an eigenvalue of T_{h} and is an isolated point of $\sigma\left(T_{h}\right)$. Hence $\sigma\left(T_{h}\right)$ is disconnected.
(1) Since h is continuous on the closure of the unit disk, then

$$
\sigma_{e}\left(T_{h}\right)=h(\partial \mathbb{D})
$$

(2) $0 \in \sigma_{p}\left(T_{h}\right) \cap \Omega$ where

$$
\begin{aligned}
\Omega & =\left\{\lambda \notin \sigma_{e}\left(T_{h}\right): \operatorname{ind}\left(T_{h}-\lambda I\right)=0\right\} \\
& =\{\lambda \notin h(\partial \mathbb{D}): n(h(\partial \mathbb{D}), \lambda)=0\} .
\end{aligned}
$$

Sketch of the proof
Want: $\Omega \cap \sigma_{p}\left(T_{h}\right)$ is countable.

Cauchy's Argument Principle

Cauchy's argument principle

if $f(z)$ is a meromorphic function inside and on some closed contour C, and f has no zeros or poles on C, then

$$
\oint_{c} \frac{f^{\prime \prime}(z)}{f(z)} d z=2 \pi i(N-P)
$$

$\lambda \in \Omega \cap \sigma_{p}\left(T_{h}\right), n(h(\partial \mathbb{D}), \lambda)=0$

Since $\frac{1}{z}+\phi(z)$ has a simple pole at $z=0$ and no other poles in the unit disk \mathbb{D}, the argument principle tells us that if λ is in $\Omega \cap \sigma_{p}\left(T_{h}\right)$, there is a unique point z_{λ} in \mathbb{D} such that

$$
\frac{1}{z_{\lambda}}+\phi\left(z_{\lambda}\right)=\lambda .
$$

$\lambda \in \Omega \cap \sigma_{p}\left(T_{h}\right), n(h(\partial \mathbb{D}), \lambda)=0$

Since $\frac{1}{z}+\phi(z)$ has a simple pole at $z=0$ and no other poles in the unit disk \mathbb{D}, the argument principle tells us that if λ is in $\Omega \cap \sigma_{p}\left(T_{h}\right)$, there is a unique point z_{λ} in \mathbb{D} such that

$$
\frac{1}{z_{\lambda}}+\phi\left(z_{\lambda}\right)=\lambda .
$$

As λ is an eigenvalue of T_{h}, there is a nonzero function g in the Bergman space L_{a}^{2} such that

$$
\begin{aligned}
\lambda g & =T_{h} g(z) \\
& =T_{\bar{z}} g(z)+T_{\phi(z)} g(z) \\
& =\frac{1}{z^{2}} \int_{0}^{z} w g^{\prime}(w) d w+\phi(z) g(z)
\end{aligned}
$$

$\lambda \in \Omega \cap \sigma_{p}\left(T_{h}\right), n(h(\partial \mathbb{D}), \lambda)=0$

Since $\frac{1}{z}+\phi(z)$ has a simple pole at $z=0$ and no other poles in the unit disk \mathbb{D}, the argument principle tells us that if λ is in $\Omega \cap \sigma_{p}\left(T_{h}\right)$, there is a unique point z_{λ} in \mathbb{D} such that

$$
\frac{1}{z_{\lambda}}+\phi\left(z_{\lambda}\right)=\lambda .
$$

As λ is an eigenvalue of T_{h}, there is a nonzero function g in the Bergman space L_{a}^{2} such that

$$
\begin{aligned}
\lambda g & =T_{h} g(z) \\
& =T_{\bar{z}} g(z)+T_{\phi(z)} g(z) \\
& =\frac{1}{z^{2}} \int_{0}^{z} w g^{\prime}(w) d w+\phi(z) g(z)
\end{aligned}
$$

We solve the above equation to obtain

$$
\frac{g^{\prime}(z)}{g(z)}=-\frac{2(\phi(z)-\lambda)+z \phi^{\prime}(z)}{1+z(\phi(z)-\lambda)}
$$

$$
\frac{g^{\prime}(z)}{g(z)}=-\frac{2(\phi(z)-\lambda)+z \phi^{\prime}(z)}{1+z(\phi(z)-\lambda)}
$$

This function has a simple pole at $z=z_{\lambda}$ with residue

$$
-\frac{2\left(\phi\left(z_{\lambda}\right)-\lambda\right)+z_{\lambda} \phi^{\prime}\left(z_{\lambda}\right)}{\phi\left(z_{\lambda}\right)-\lambda+z_{\lambda} \phi^{\prime}\left(z_{\lambda}\right)}=-1-\frac{1}{1-z_{\lambda}^{2} \phi^{\prime}\left(z_{\lambda}\right)} .
$$

$$
\frac{g^{\prime}(z)}{g(z)}=-\frac{2(\phi(z)-\lambda)+z \phi^{\prime}(z)}{1+z(\phi(z)-\lambda)}
$$

This function has a simple pole at $z=z_{\lambda}$ with residue

$$
-\frac{2\left(\phi\left(z_{\lambda}\right)-\lambda\right)+z_{\lambda} \phi^{\prime}\left(z_{\lambda}\right)}{\phi\left(z_{\lambda}\right)-\lambda+z_{\lambda} \phi^{\prime}\left(z_{\lambda}\right)}=-1-\frac{1}{1-z_{\lambda}^{2} \phi^{\prime}\left(z_{\lambda}\right)} .
$$

The regularity of $g(z)$ at $z=z_{\lambda}$ forces this residue to be in $\mathbb{N}=\{0,1,2,3, \cdots$,$\} which leads to$

$$
z_{\lambda}^{2} \phi^{\prime}\left(z_{\lambda}\right)=1+\frac{1}{n+1}
$$

for some $n \in \mathbb{N}$.

$$
\frac{g^{\prime}(z)}{g(z)}=-\frac{2(\phi(z)-\lambda)+z \phi^{\prime}(z)}{1+z(\phi(z)-\lambda)}
$$

This function has a simple pole at $z=z_{\lambda}$ with residue

$$
-\frac{2\left(\phi\left(z_{\lambda}\right)-\lambda\right)+z_{\lambda} \phi^{\prime}\left(z_{\lambda}\right)}{\phi\left(z_{\lambda}\right)-\lambda+z_{\lambda} \phi^{\prime}\left(z_{\lambda}\right)}=-1-\frac{1}{1-z_{\lambda}^{2} \phi^{\prime}\left(z_{\lambda}\right)} .
$$

The regularity of $g(z)$ at $z=z_{\lambda}$ forces this residue to be in $\mathbb{N}=\{0,1,2,3, \cdots$,$\} which leads to$

$$
z_{\lambda}^{2} \phi^{\prime}\left(z_{\lambda}\right)=1+\frac{1}{n+1}
$$

for some $n \in \mathbb{N}$. This restricts the set
$\Omega \cap \sigma_{p}\left(T_{h}\right) \subset\left\{\lambda: \lambda=\frac{1}{z_{\lambda}}+\phi\left(z_{\lambda}\right), z_{\lambda}^{2} \phi^{\prime}\left(z_{\lambda}\right)=1+\frac{1}{n+1}\right.$, for some $\left.n \in \mathbb{N}\right\}$
to be a countable set.

$$
\frac{g^{\prime}(z)}{g(z)}=-\frac{2(\phi(z)-\lambda)+z \phi^{\prime}(z)}{1+z(\phi(z)-\lambda)}
$$

This function has a simple pole at $z=z_{\lambda}$ with residue

$$
-\frac{2\left(\phi\left(z_{\lambda}\right)-\lambda\right)+z_{\lambda} \phi^{\prime}\left(z_{\lambda}\right)}{\phi\left(z_{\lambda}\right)-\lambda+z_{\lambda} \phi^{\prime}\left(z_{\lambda}\right)}=-1-\frac{1}{1-z_{\lambda}^{2} \phi^{\prime}\left(z_{\lambda}\right)} .
$$

The regularity of $g(z)$ at $z=z_{\lambda}$ forces this residue to be in $\mathbb{N}=\{0,1,2,3, \cdots$,$\} which leads to$

$$
z_{\lambda}^{2} \phi^{\prime}\left(z_{\lambda}\right)=1+\frac{1}{n+1}
$$

for some $n \in \mathbb{N}$. This restricts the set
$\Omega \cap \sigma_{p}\left(T_{h}\right) \subset\left\{\lambda: \lambda=\frac{1}{z_{\lambda}}+\phi\left(z_{\lambda}\right), z_{\lambda}^{2} \phi^{\prime}\left(z_{\lambda}\right)=1+\frac{1}{n+1}\right.$, for some $\left.n \in \mathbb{N}\right\}$
to be a countable set. Thus 0 is an isolated point in $\sigma(T)$. Hence we conclude that the spectrum $\sigma\left(T_{h}\right)$ is disconnected.

UNITARY OPERATOR U_{z}

For $z \in \mathbb{D}$, let ϕ_{z} be the analytic map of \mathbb{D} onto \mathbb{D} defined by

$$
\begin{equation*}
\phi_{z}(w)=\frac{z-w}{1-\bar{z} w} . \tag{4}
\end{equation*}
$$

UNITARY OPERATOR U_{z}

For $z \in \mathbb{D}$, let ϕ_{z} be the analytic map of \mathbb{D} onto \mathbb{D} defined by

$$
\begin{equation*}
\phi_{z}(w)=\frac{z-w}{1-\bar{z} w} . \tag{4}
\end{equation*}
$$

For $z \in \mathbb{D}$, let $U_{z}: L_{a}^{2} \rightarrow L_{a}^{2}$ be the unitary operator defined by

$$
U_{z} f=\left(f \circ \phi_{z}\right) \phi_{z}^{\prime}
$$

UNITARY OPERATOR U_{z}

For $z \in \mathbb{D}$, let ϕ_{z} be the analytic map of \mathbb{D} onto \mathbb{D} defined by

$$
\begin{equation*}
\phi_{z}(w)=\frac{z-w}{1-\bar{z} w} . \tag{4}
\end{equation*}
$$

For $z \in \mathbb{D}$, let $U_{z}: L_{a}^{2} \rightarrow L_{a}^{2}$ be the unitary operator defined by

$$
U_{z} f=\left(f \circ \phi_{z}\right) \phi_{z}^{\prime} .
$$

Notice that $U_{z}{ }^{*}=U_{z}{ }^{-1}=U_{z}$, so U_{z} is actually a self-adjoint unitary operator.

UNITARY OPERATOR U_{z}

For $z \in \mathbb{D}$, let ϕ_{z} be the analytic map of \mathbb{D} onto \mathbb{D} defined by

$$
\begin{equation*}
\phi_{z}(w)=\frac{z-w}{1-\bar{z} w} \tag{4}
\end{equation*}
$$

For $z \in \mathbb{D}$, let $U_{z}: L_{a}^{2} \rightarrow L_{a}^{2}$ be the unitary operator defined by

$$
U_{z} f=\left(f \circ \phi_{z}\right) \phi_{z}^{\prime} .
$$

Notice that $U_{z}{ }^{*}=U_{z}{ }^{-1}=U_{z}$, so U_{z} is actually a self-adjoint unitary operator.

For S a bounded operator on L_{a}^{2}, define S_{z} to be the bounded operator on L_{a}^{2} given by conjugation with U_{z} :

$$
S_{z}=U_{z} S U_{z}
$$

MAXIMAL IDEAL SPACE OF H^{∞}

Let \mathcal{M} be the maximal ideal space of H^{∞}, i.e., the set of complex homomorphisms of H^{∞} with w^{*}-topology. Then \mathcal{M} is a compact Hausdorff space.

MAXIMAL IDEAL SPACE OF H^{∞}

Let \mathcal{M} be the maximal ideal space of H^{∞}, i.e., the set of complex homomorphisms of H^{∞} with w^{*}-topology. Then \mathcal{M} is a compact Hausdorff space. If z is a point in the unit disk \mathbb{D}, then point evaluation at z is a multiplicative linear functional on \mathcal{M}. Thus we can think of z as an element of \mathcal{M} and the unit disk \mathbb{D} as a subset of \mathcal{M}. Carleson's corona theorem states that \mathbb{D} is dense in \mathcal{M}.

MAXIMAL IDEAL SPACE OF H^{∞}

Let \mathcal{M} be the maximal ideal space of H^{∞}, i.e., the set of complex homomorphisms of H^{∞} with w^{*}-topology. Then \mathcal{M} is a compact Hausdorff space. If z is a point in the unit disk \mathbb{D}, then point evaluation at z is a multiplicative linear functional on \mathcal{M}. Thus we can think of z as an element of \mathcal{M} and the unit disk \mathbb{D} as a subset of \mathcal{M}. Carleson's corona theorem states that \mathbb{D} is dense in \mathcal{M}. Suppose $m \in \mathcal{M}$ and $z \mapsto \alpha_{z}$ is a mapping of \mathbb{D} into some topological space E. Suppose also that $\beta \in E$. The notation

$$
\lim _{z \rightarrow m} \alpha_{z}=\beta
$$

means (as you should expect) that for each open set X in E containing β, there is an open set Y in \mathcal{M} containing m such that $\alpha_{z} \in X$ for all $z \in Y \cap \mathbb{D}$. Note that with this notation z is always assumed to lie in \mathbb{D}.

HOFFMAN MAP

For $m \in \mathcal{M}$, let $\phi_{m}: \mathbb{D} \rightarrow \mathcal{M}$ denote the Hoffman map. This is defined by setting

$$
\phi_{m}(w)=\lim _{z \rightarrow m} \phi_{z}(w)
$$

for $w \in \mathbb{D}$; here we are taking a limit in \mathcal{M}.

Hoffman map

For $m \in \mathcal{M}$, let $\phi_{m}: \mathbb{D} \rightarrow \mathcal{M}$ denote the Hoffman map. This is defined by setting

$$
\phi_{m}(w)=\lim _{z \rightarrow m} \phi_{z}(w)
$$

for $w \in \mathbb{D}$; here we are taking a limit in \mathcal{M}. The existence of this limit, as well as many other deep properties of ϕ_{m}, was proved by Hoffman (Ann. Math., 103 (1967)).

Localization S_{m} of S in Toeplitz algebra

The Toeplitz algebra \mathcal{T} is the C^{*}-subalgebra of $\mathcal{B}\left(L_{a}^{2}\right)$ generated by $\left\{T_{g}: g \in H^{\infty}\right\}$.

Localization S_{m} of S in Toeplitz algebra

The Toeplitz algebra \mathcal{T} is the C^{*}-subalgebra of $\mathcal{B}\left(L_{a}^{2}\right)$ generated by $\left\{T_{g}: g \in H^{\infty}\right\}$.

LEMMA

If $S \in \mathcal{T}$, the Toeplitz algebra and $m \in \mathcal{M}$, then there exists $S_{m} \in \mathcal{T}$ such that

$$
\lim _{z \rightarrow m}\left\|S_{z} f-S_{m} f\right\|=0
$$

for every f in L_{a}^{2}. If $S=T_{u_{1}} \ldots T_{u_{n}}$, where $u_{1}, \ldots, u_{n} \in \mathcal{U}$, then $S_{m}=T_{u_{1} \circ \phi_{m}} \ldots T_{u_{n} \circ \phi_{m}}$.

Essential spectrum

Using a similar argument as one in the proof of Theorem 10.3 in (D. Suarez, Indiana Univ. Math. J., 56 (2007)), we have the following theorem.

Theorem

If $S \in \mathcal{T}$, the Toeplitz algebra, then

$$
\begin{gathered}
\mathbb{C} \backslash \sigma_{e}(S)=\left\{\lambda \in \mathbb{C}: \lambda \notin \bigcup_{m \in \mathcal{M} \backslash \mathbb{D}} \sigma\left(S_{m}\right) \quad\right. \text { and } \\
\left.\sup _{m \in \mathcal{M} \backslash \mathbb{D}}\left\|\left(S_{m}-\lambda I\right)^{-1}\right\|<\infty\right\} .
\end{gathered}
$$

Thin Blaschke product

To a sequence $\left\{z_{n}\right\}_{n}$ in \mathbb{D} with $\sum_{n=1}^{\infty}\left(1-\left|z_{n}\right|\right)<\infty$, there corresponds a Blaschke product

$$
b(z)=\prod_{n=1}^{\infty} \frac{-\bar{z}_{n}}{\left|z_{n}\right|} \frac{z-z_{n}}{1-\bar{z}_{n} z}, \quad z \in \mathbb{D}
$$

Thin Blaschke product

To a sequence $\left\{z_{n}\right\}_{n}$ in \mathbb{D} with $\sum_{n=1}^{\infty}\left(1-\left|z_{n}\right|\right)<\infty$, there corresponds a Blaschke product

$$
b(z)=\prod_{n=1}^{\infty} \frac{-\bar{z}_{n}}{\left|z_{n}\right|} \frac{z-z_{n}}{1-\bar{z}_{n} z}, \quad z \in \mathbb{D}
$$

A sequence $\left\{z_{n}\right\}_{n}$ and its associated Blaschke product are called thin if

$$
\lim _{n \rightarrow \infty} \prod_{k \neq n}\left|\frac{z_{n}-z_{k}}{1-\bar{z}_{k} z_{n}}\right|=1
$$

Thin Blaschke product

To a sequence $\left\{z_{n}\right\}_{n}$ in \mathbb{D} with $\sum_{n=1}^{\infty}\left(1-\left|z_{n}\right|\right)<\infty$, there corresponds a Blaschke product

$$
b(z)=\prod_{n=1}^{\infty} \frac{-\bar{z}_{n}}{\left|z_{n}\right|} \frac{z-z_{n}}{1-\bar{z}_{n} z}, \quad z \in \mathbb{D} .
$$

A sequence $\left\{z_{n}\right\}_{n}$ and its associated Blaschke product are called thin if

$$
\lim _{n \rightarrow \infty} \prod_{k \neq n}\left|\frac{z_{n}-z_{k}}{1-\bar{z}_{k} z_{n}}\right|=1
$$

Hedenmalm (Proc. Amer. Math. Soc., 99 (1987)) showed that for each m in $\mathcal{M} \backslash \mathbb{D}$, either

$$
b \circ \phi_{m}(z)=\lambda_{m} \quad \text { or } \quad b \circ \phi_{m}(z) \in \operatorname{Aut}(\mathbb{D})
$$

for some unimodular constant λ_{m}. The latter case actually occurs if m is in the Gleason part of some point in the closure of zeros of b in \mathbb{D}.

Theorem

Let F be a continuous function on the closure $\overline{\mathbb{D}}$ of the unit disk, b be an infinite thin Blaschke product and $F_{b}=F \circ b$. Then

$$
\sigma_{e}\left(T_{F_{b}}\right)=\sigma\left(T_{F}\right)
$$

Theorem

Let F be a continuous function on the closure $\overline{\mathbb{D}}$ of the unit disk, b be an infinite thin Blaschke product and $F_{b}=F \circ b$. Then

$$
\sigma_{e}\left(T_{F_{b}}\right)=\sigma\left(T_{F}\right)
$$

Proof Let $S=T_{F_{b}}$.
For each m in $\mathcal{M} \backslash \mathbb{D}$,

$$
S_{m}=T_{F \circ b \circ \phi_{m}}
$$

Theorem

Let F be a continuous function on the closure $\overline{\mathbb{D}}$ of the unit disk, b be an infinite thin Blaschke product and $F_{b}=F \circ b$. Then

$$
\sigma_{e}\left(T_{F_{b}}\right)=\sigma\left(T_{F}\right)
$$

Proof Let $S=T_{F_{b}}$.
For each m in $\mathcal{M} \backslash \mathbb{D}$,

$$
S_{m}=T_{F \circ b \circ \phi_{m}}
$$

By Hedenmalm's result above, we have that for each m in $\mathcal{M} \backslash \mathbb{D}$, either
(a) $b \circ \phi_{m}(z)=\lambda_{m}$ for some unimodular constant λ_{m} or
(b) $\tau_{m}=b \circ \phi_{m}(z) \in \operatorname{Aut}(\mathbb{D})$.

(A) $b \circ \phi_{m}(z)=\lambda_{m}$

S_{m} equals the operator $F\left(\lambda_{m}\right) /$ and hence $\sigma\left(S_{m}\right)$ equals one point $F\left(\lambda_{m}\right)$. Thus

$$
\sigma\left(S_{m}\right) \subset F(\partial \mathbb{D}) \subset \sigma\left(T_{F}\right)
$$

(A) $b \circ \phi_{m}(z)=\lambda_{m}$

S_{m} equals the operator $F\left(\lambda_{m}\right) /$ and hence $\sigma\left(S_{m}\right)$ equals one point $F\left(\lambda_{m}\right)$. Thus

$$
\sigma\left(S_{m}\right) \subset F(\partial \mathbb{D}) \subset \sigma\left(T_{F}\right)
$$

and for each λ not in $\sigma\left(T_{F}\right)$,

$$
\begin{aligned}
\left\|\left(S_{m}-\lambda I\right)^{-1}\right\| & =\frac{1}{\left|F\left(\lambda_{m}\right)-\lambda\right|} \\
& \leq \frac{1}{\operatorname{dis}\left(\lambda, \sigma\left(T_{F}\right)\right)}
\end{aligned}
$$

(B) $\tau_{m}=b \circ \phi_{m}(z) \in \operatorname{Aut}(\mathbb{D})$

$$
\begin{aligned}
S_{m} & =T_{F \circ \tau_{m}} \\
& =V_{m} T_{F} V_{m}^{*}
\end{aligned}
$$

where V_{m} is the unitary operator on the Bergman space L_{a}^{2} given by

$$
V_{m} f(z)=f\left(\tau_{m}(z)\right) \tau_{m}^{\prime}(z)
$$

(в) $\tau_{m}=b \circ \phi_{m}(z) \in \operatorname{Aut}(\mathbb{D})$

$$
\begin{aligned}
S_{m} & =T_{F \circ \tau_{m}} \\
& =V_{m} T_{F} V_{m}^{*}
\end{aligned}
$$

where V_{m} is the unitary operator on the Bergman space L_{a}^{2} given by

$$
V_{m} f(z)=f\left(\tau_{m}(z)\right) \tau_{m}^{\prime}(z)
$$

Thus $\sigma\left(S_{m}\right)=\sigma\left(T_{F}\right)$ and for each λ in $\mathbb{C} \backslash \sigma\left(S_{m}\right)$,

$$
\begin{aligned}
\left\|\left(S_{m}-\lambda I\right)^{-1}\right\| & =\left\|V_{m} T_{F-\lambda}^{-1} V_{m}^{*}\right\| \\
& =\left\|T_{F-\lambda}^{-1}\right\| .
\end{aligned}
$$

So we have

$$
\cup_{m \in \mathcal{M} \backslash \mathbb{D}} \sigma\left(S_{m}\right)=\sigma\left(T_{F}\right)
$$

So we have

$$
\cup_{m \in \mathcal{M} \backslash \mathbb{D}} \sigma\left(S_{m}\right)=\sigma\left(T_{F}\right)
$$

and for each $\lambda \notin \sigma\left(T_{F}\right)$,

$$
\left\|\left(S_{m}-\lambda I\right)^{-1}\right\| \leq \max \left\{\frac{1}{\operatorname{dis}\left(\lambda, \sigma\left(T_{F}\right)\right)},\left\|T_{F-\lambda}^{-1}\right\|\right\}<\infty
$$

So we have

$$
\cup_{m \in \mathcal{M} \backslash \mathbb{D}} \sigma\left(S_{m}\right)=\sigma\left(T_{F}\right)
$$

and for each $\lambda \notin \sigma\left(T_{F}\right)$,

$$
\left\|\left(S_{m}-\lambda I\right)^{-1}\right\| \leq \max \left\{\frac{1}{\operatorname{dis}\left(\lambda, \sigma\left(T_{F}\right)\right)},\left\|T_{F-\lambda}^{-1}\right\|\right\}<\infty .
$$

By the following theorem

Theorem

If $S \in \mathcal{T}$, the Toeplitz algebra, then

$$
\begin{gathered}
\mathbb{C} \backslash \sigma_{e}(S)=\left\{\lambda \in \mathbb{C}: \lambda \notin \bigcup_{m \in \mathcal{M} \backslash \mathbb{D}} \sigma\left(S_{m}\right) \quad\right. \text { and } \\
\left.\sup _{m \in \mathcal{M} \backslash \mathbb{D}}\left\|\left(S_{m}-\lambda I\right)^{-1}\right\|<\infty\right\} .
\end{gathered}
$$

we have that

$$
\sigma_{e}\left(T_{F_{b}}\right)=\sigma_{e}(S)=\sigma\left(T_{F}\right)
$$

Disconnected Essential Spectrum

THEOREM

Let h be $\bar{z}+\phi$ such that $\sigma\left(T_{h}\right)$ is disconnected. Let b be an infinite thin Blaschke product and $h_{b}=h \circ b$. Then

$$
\sigma_{e}\left(T_{h_{b}}\right)=\sigma\left(T_{h}\right)
$$

is disconnected.

LEMMA

For each $0<r<1$, there exists a rational function $\phi(z)$ with poles outside $\overline{\mathbb{D}}$ such that
(a) $2 \phi(r)+r \phi^{\prime}(r)=0$.
(b) $1+z \phi(z)$ has a simple zero at $z=r$ and no other zeros in $\overline{\mathbb{D}}$.
(c) The winding number

$$
n(h(\partial \mathbb{D}), 0)=0
$$

where $h=\bar{z}+\phi(z)$.
Proof: For $\frac{1}{\sqrt{2}}<r<1$, we are going to construct ϕ by some conformal mappings.

Proof of Lemma

Proof of Lemma

Let λ be the unimodular constant $i \frac{2+i}{2-i} \frac{\sqrt{2}}{1+i}$. Define

$$
\chi(z)=\frac{1}{2 r}\left(\frac{1+z}{1-z}\right)^{2}
$$

Let

$$
\Psi(z)=\chi\left(\frac{\lambda z-\frac{i}{2-i}}{1+\frac{i}{2+i} \lambda z}\right)
$$

Then

$$
\Psi(0)=-\frac{i}{r}, \quad \Psi\left(\frac{1}{\sqrt{2}}\right)=\frac{i}{r} .
$$

Now define

$$
\psi(z)=-i \Psi\left(\frac{1}{\sqrt{2} r} z\right)
$$

Now define

$$
\psi(z)=-i \Psi\left(\frac{1}{\sqrt{2} r} z\right)
$$

Since $r>\frac{1}{\sqrt{2}}$, the poles of $\psi(z)$ are outside $\overline{\mathbb{D}}$.

Since χ is a conformal map of \mathbb{D} onto $\mathbb{C} \backslash(-\infty, 0], \psi$ is a conformal map of \mathbb{D} onto a region bounded by a simple closed curve and 0 is outside the region. In particular $\psi(\partial \mathbb{D})$ does not wind around 0 and $\psi(z) \neq 0$ for all z in $\overline{\mathbb{D}}$.

Since χ is a conformal map of \mathbb{D} onto $\mathbb{C} \backslash(-\infty, 0], \psi$ is a conformal map of \mathbb{D} onto a region bounded by a simple closed curve and 0 is outside the region. In particular $\psi(\partial \mathbb{D})$ does not wind around 0 and $\psi(z) \neq 0$ for all z in $\overline{\mathbb{D}}$.
Defining

$$
\phi(z)=\frac{(z-r) \psi(z)-1}{z}
$$

we see that (a) and (b) are satisfied:
(a) $2 \phi(r)+r \phi^{\prime}(r)=0$.
(b) $1+z \phi(z)$ has a simple zero at $z=r$ and no other zeros in $\overline{\mathbb{D}}$.

On $\partial \mathbb{D}$

$$
\begin{aligned}
\bar{z}+\phi(z) & =\frac{1}{z}+\phi(z) \\
& =\frac{1+z \phi(z)}{z} \\
& =\frac{z-r}{z} \psi(z) .
\end{aligned}
$$

So (c) is satisfied too.

Proof of $T_{\bar{z}} f(z)=\frac{1}{z^{2}} \int_{0}^{z} w f^{\prime}(w) d w$

LEMMA

For f in the Bergman space L_{a}^{2},

$$
T_{\bar{z}} f(z)=\frac{1}{z^{2}} \int_{0}^{z} w f^{\prime}(w) d w .
$$

Proof of $T_{\bar{z}} f(z)=\frac{1}{z^{2}} \int_{0}^{z} w f^{\prime}(w) d w$

LEMMA

For f in the Bergman space L_{a}^{2},

$$
T_{\bar{z}} f(z)=\frac{1}{z^{2}} \int_{0}^{z} w f^{\prime}(w) d w .
$$

Proof. Note that

$$
\left\{e_{n}=\sqrt{n+1} z^{n}\right\}_{n=0}^{\infty}
$$

is an orthonormal basis of the Bergman space. To prove this lemma, we need only verify the above equality for each $f(z)=e_{n}$.

Proof of $T_{\bar{z}} f(z)=\frac{1}{z^{2}} \int_{0}^{z} w f^{\prime}(w) d w$

LEMMA

For f in the Bergman space L_{a}^{2},

$$
T_{\bar{z}} f(z)=\frac{1}{z^{2}} \int_{0}^{z} w f^{\prime}(w) d w .
$$

Proof. Note that

$$
\left\{e_{n}=\sqrt{n+1} z^{n}\right\}_{n=0}^{\infty}
$$

is an orthonormal basis of the Bergman space. To prove this lemma, we need only verify the above equality for each $f(z)=e_{n}$. As $T_{\bar{z}}$ is the adjoint of the Bergman shift, we have

$$
T_{\bar{z}} e_{n}= \begin{cases}0 & n=0 \\ \sqrt{\frac{n}{n+1}} e_{n-1} . & n>0\end{cases}
$$

On the other hand, since $e_{n}(w)=\sqrt{n+1} w^{n}$, an easy calculation gives

$$
\int_{0}^{z} w e_{n}^{\prime}(w) d w=\frac{n z^{n+1}}{\sqrt{n+1}}
$$

On the other hand, since $e_{n}(w)=\sqrt{n+1} w^{n}$, an easy calculation gives

$$
\int_{0}^{z} w e_{n}^{\prime}(w) d w=\frac{n z^{n+1}}{\sqrt{n+1}}
$$

Thus we have

$$
\begin{aligned}
\frac{1}{z^{2}} \int_{0}^{z} w e_{n}^{\prime}(w) d w & =\frac{n z^{n-1}}{\sqrt{n+1}} \\
& =\sqrt{\frac{n}{n+1}} e_{n-1}
\end{aligned}
$$

to obtain

$$
T_{\bar{z}} e_{n}=\frac{1}{z^{2}} \int_{0}^{z} w e_{n}^{\prime}(w) d w
$$

This completes the proof of the lemma.

